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LYAPUNOV FUNCTIONS OF THE MECHANICAL ENERGY TYPE* 

I. TBREKI and L.BATVMiI 

When examining the properties of the stability and asymptotic behaviour 
of a system a Lyapunov function is often used as the total mechanical 
energy of the system /l-7/. By analogy with the division of the energy 
into kinetic and potential energy, it is proposed below to construct a 
Lyapunov function in the form of the sum of two subsidiary scalar 
functions, such that its derivative on account of the system is estimated 
using some kind of function of these subsidiary functions. Generalizing 
the results /8/, we examine the case when the derivative of the Lyapunov 
function can also take positive values, and the equation of comparison 
the emerges from the estimate of the Lyapunov function does not permit 
a separation of variables. V.V. Rumyantsev's theorem /3/ on the asymptotic 
stability with respect to the velocities of the equilibrium position of 
a dissipative mechanical system is generalized on the basis of the results 
obtained. 

1. Consider the set of differential equations 

2' = x (I, I) (t E R, = IO, m), 2 E R") (1.1) 

where the function X is defined and continuous in the set R, x G, where G is an open set. 
Besides the standard nctation and concepts /9/ we will use the following. The continuous 

function q: R, -+ R, is called positive on average /4/, if for any infinite system S of non- 
intersecting segments ofthe semi-axis R_ of identical length we have the relation 

j cp (t)dt = = 

We shall further introduce the notation [a], = mas (0.~7) and [a)_ = xnax (0. --a)-thepositive 
and negative parts of the real number a. 

Theorem 1.1. We will assume that the continuously differentiable functions I-,. I', : R* x 
G+ R and the continuous functions w.r: R+?+ R,, which satisfy the following conditions in 
the set R, x G , exist: 

1) I‘, (1. I) > 0. 1‘ (I. z) = 1‘, (t, f) - 1-r (i. r) .> 0 

2) 1.' (1. r) < --w (t. 1‘, (t. J)) - r (2, 1‘ (f, I)) 

where the functions o(t.u), r(1.u) do not decrease with respect to 2; for fixed values U" the 
function o(t. uU) is positive or. the average and the solutions of the equation u' = r (r. u) 
are bounded in R,; 

3) for any constant a,a,> 0 and for the continuous function i:R_ +R"' from the 
inequality l.(f, E(I)) < a(t E R_) it follows that the function 

~~,,[r.,'(s,I(.c)!J_d". H(t)= {s: O<s<<l, l'r@,E(s))>a~~~) 

is uniformly continuous in R,. Then for every solution r(f) of Eq.(l.l), determined for all 

t> 10 
1’1 (f. 1 (I)) -t 0. l’, (f, I(f)) - const (1 + a?) 

Proof. Suppose s (1) is some solution of Eq.(l.l), determined in [f,, m), and suppose u(t) 
is the upper solution of the problem U' = r (1, u), u (lo) = 1: (lo, I (to)). 

The function u(t) does not decrease and is bounded, and it therefore has the finite limit 
Us as t-too. We shall introduce the notation 

L'1 (f) = 1'1 (t, r (f)), L'* (f) = F'* (t, r (t)) 
1’ (1) = c, (f) f U) (f), u’ (t) = 1, (f) + I(, - u (f) 

By virtue of condition 2) the function v(t) satisfies the 'inequality v'< r(1.u) in the 
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interval (to% m); therefore using the fundamental comparison theorem /lO/ 

W' (t) < --0 (1, % (Qf < 0 (t > to) (1.2) 

Thus, the function his non-negative and does not increase, it therefore has it a finite 
limit as t-coo. 

It remained to prove that am-+ 0 as t+ 00. We shall assume the opposite, i.e. suppose 

lilpzp s(t)> 0 

Integrating Eq. (1.2) in It,, DC), we obtain the inequality 

f 
1. 

0 (4 VI 0)) dt Q w (to) - !E w (f) < 00 

The function o(I, u) is non-decreasing with respect to u and is positive on the average 
for fixed values of u; it therefore follows from (1.4) that 

,Ii<rn2f 4 ft)= 0 

Together with inequality (1.3) this entails the existence of a number u>O, such that 
for any T> to the numbers A = A (T), B = B(T) (T<A <B) which satisfy the relations 
vX (A) = 2y/3, a1 (I?) = 1’!3, ~‘3 < v1 (t) < 2y’3 for t E [A (T), B (T)] will be obtained. 

By virtue of inequality (1.2) we have 

Since the function o(t, $3) is pasitive on the average, then 

lim (B (T)- A (T)) = 0 41.5) 
T-MX 

On the other hand, the SUII v,(t)+ 0% (tf has a finite limit as t-cm. consequently T,> 0 
exists* such that from T > To it- followsthat ~~(3 (T))- c%(A (T)f> $6. However 

B(T) 
f 

T< 
s 

[vi WI, dt 

A(T) 

then 

~(1.6) 

and this inequality (we take into account Eq .!1.5; 1 is obtained in contradiction 
Indeed, by virtue of condition 3: 

i'; B (T) 
for every E > 0 an a(s) > 6 exists, such 

-A (T)<6 there follows the inequality 

OS!_ [l.*.(i)J*df=~lVz.(t;x(l))J+dl<E 
A 

which contradicts (1.5), (1.6). The theorem is proved. 

to condition 
that frcrr: 

(Li) 

Suppose I = (y.z) is the splitting, for which ye R", z~ R" (U<m< li,n = k - m), and we 
will assume that OcG. Using the above theorem to obtain the conditions of the asymptotic 
y-stability of the zerc solution of Eq,(l.i), we obtain 

Corollary 1.1. We will assume that ail the conditions of Theorem 1.1 hold, whilst V, (1. 

T) > 0. the function 1',(f, y. z) is y-positive and the zero solution of the equation u' = r(l, u) 
is stable. Then the zero solution of Eq.tl.1) is asymptotically y-stable. 

Proof. Since r"(t,r)< r (2,1'(i.r)) and the Lyapunov function %'(t, 3) is y-positive definite, 
the zero solution of Eq.Cl.1) is y-stable /9/. Hence using Theorem 1.1 we obtain the required 
statement. 

Note 1.1. For simplicity Theorem 1.1 does not incorporate the strictest version of 
condition 3). It could be additionally assumed that the function f(t) also has the praperty 

i 0 (:, r'l(& E (0)) dl <= (W 

(see (1.411, 
Theorem 1.1 also remains valid after replacing condition 3) by the following condition: 
3') Suppose for any constants s,a,a,>O and the continuous function E: R,+ R", which 

satisfy the relations 
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6 = 6 (E, a, aI, E) > 0 exists, such that from the condition 

it follows that 

In fact, condition 3) was only used to derive estimate (1.7), and for this it is sufficient 
to require that 3'1 holds. 

It is shown below that this condition of the theorem has practical value. 

Note 1.2. An analysis of the proof of Theorem 1.1 also shows that in condition 3) it is 
sufficient to require the uniform continuity of the function 

S II;’ (13 E M)l_ds 
IILQ 

in R,, or of the function V,(i,e (1)) in the set H(m). 

2. Consider a holonomic scleronomous mechanical system acted upon by potential, dissipative 
ana gyroscopic forces 

d dT dT --__= 
di dq’ dq 

- +- Q_te(i), qEcJ (2.1) 

T = i” (q, 9’) = + (q’)r A (Q) q’ 

where RC i?' is some open connected set, T is the kinetic energy (here and henceforth zr 
signifies the transposed column vector I E R'), n = n (tq q) is the potential energy (n (t. 0)~ 0), 
Q = Q (t, q, q’) the resultant of the gyroscopic ana dissipative forces, i.e. QT (!? q, q’) q’ < 0 
for all 1 E R,, 9 E Q, 9' E R'. 

We will assume that all the function in (2.1) are fairly smooth and all motions with 
fairly small initial values 11 qOIJ,/lqO’u are determined for all values of t> t,. We shall 
examine the asymptotic behaviour of the generalized velocities q’. 

For the stationary case n = n (q),Q = Q(q.q’),e(t)~ 0 it is proved /3/ that if the 
dissipation is complete and there is no potential force (JJ (q)= 0), then the equilibrium position 
q=q’=O is asymptotically stable with respect to the velocities. Experience suggests that 
this is also true when n(q)> 0 if the motion is bounded. This will be proved belpw using 
Theorem 1.1. In addition, we will generalize Rumyantsev's theorem /3/ to the non-stationary 
case. In all its previous generalizations /4, 5, 8/ the authors required that the quantity 
11 Q (i,q,q’)j/ , like the function t, is bcunded in one sense or another. This condition unnatural 
since as the dissipation increases the velocity decreases. Using the results of Sect.1, we 
also obtain a theorem on the asyptotic 9'-stability in the non-stationary case, which does 
not contain any requirement of the boundedness of 11 Q(t, q, q’)jI.: 

We shall introduce the notation 

Eh (1) = {q E R: n (t, q) < h). E,,* = {(L q) E R’+l: 

t E 4, 4 E Eh (1)) 

Theorem 2.1. We will assume that for the arbitrary fixed value h> 0 the following 
conditions hold for all (t, q,q’)E Eh* x R’: 

a) T (q, 9') > c 11 9' iI* (0 < c = c (h) = conat) 
b) QT (t, qt q-1 q' < -e (4 b (T (q. 4")) 

where p, b: R, -+ R, are continuous functions, cp is a positive function on the average, b is a 
strictly increasing function and b (0)= 0; 

cl n (i, q) > 0 
d) 18~~ (t, q)iatl, Q r (t, II (i, q)) 

where the function r(t, u) is continuous and increases with respect to u; 
e) the solutions of the equation 

IL' = 1 e (t) 1 &/VI'/* -j- r (t, u) (2.2) 
with fairly small initial values are bounded; 

f) the function II 6m (t, 9)/6'9II is bounded in the set Eh*. 
Then for every motion q(t) with fairly small initial values we have q’(t)-0, n(i, q(t))+ 

const (t -c 03). 
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Proof. Suppose I;, = T, V, = az, V = V, + V,. Then 

li’ (t, g, 4’) = an!& + QTg. + e (1) g’ \< -_(o (t) b (VI (9, 4’)) -I- 1 e (t) 1 dtk”lil -t r 0, F’) 

Suppose now u(t)= u(t; f,, ~1~) is a solution of Eq.f2.2), such that us> 0, u ($)I$; h = const 
when t> t,, and suppose g = q(f) is the motion of system (2.1) with the initial values go, qo’, 
which satisfy the inequality 

that 

V (to, go, go’) = T (go, go7 + n (tog 40) < uo 
Using the comparison Theorem /lo/ 

n ft, g ft)) < V (t, g f% g' ($1) Q u 0) B k (t 2r to) 

We shall now use Theorem 1.1. Conditions 1) and 2) obviously hold and it remains to verify 
condition 3) holds for E (t) = (g(t), g' (f))=. By virtue of the conditions of the theorem the 

following estimate holds: 

In’ (t, q)l, 6: ladad, I- II an /ag II II q’ 1) Q r (t, I( (t)) -I- const (k:cp (2.3) 
and consequently 

~~n.(r,gjr))l,dr~a(B) --u(A)+const(B-A)eO, (B-A)+0 

Hence bearing in mind the fact that u(t)+& < 03, we directly obtain condition 3). The 
theorem is proved. 

Consider now the case of the potential energy x i= n(g), which does not depend on the time 
t. We will examine only the bounded motion. (Since n(g(t)) has a finite limit, then for the 
boundedness of all the motion it is sufficient that the conditions n (gf - 0~ (ilgil-) =) hold. 
The set Eh* can now be replaced by the set R, x K. where k'c R' is a compactum, and since 
conditions a),d)-f) obviously hold, we obtain 

Corollary 2.1. We will assume that in system (2.1) the potential energy does not depend 
on the time and is non-negative in the neighhourhood of the equilibrium position q = 0. We 
shall further assume that the dissipation is complete on the average, i.e. for every compactum 
h'c A' the continuous functions Q. a: R,+ R_ exist, such that q is positive on the average, 
the function a strictly increases, a (0) = 0 and QT (1. q, g’) g’ < -_CF (t)a (11 q’[l) in the set R+ x A' ,: 
R’. 

Then for every bounded motion q(t) of system 12.1) the relations 

(f-00) hold. 

Corollary 2.2. We will assume that rr (q)> 0 and every motion of 

d iv (g. g’) a.?- (4.9’1 _ 
XT------- OQ - 9 + Q (f> 9, rl’) 

q’ (1) -+ 0, n (9 (i)) - const 

the system 

(2.4) 

with fairly small initial values is bounded in R,. We shall further assume that the dissipation 
is complete on the average (see Corollary 2.1), 

Then the equilibrium position 9 = q’ = 0 is asymptotically q'-stable. 
We shall now formulate one corcllary of Theorem 2.1 for Eq.(2.4), which does not require 

the boundedness of the motion. 
We shall introduce the notation &, = (9~ Q: I (q) < h}. 

corollary 2.3. We shall assume that for the arbitrary fixed value h>O the following 
conditions hold: 

a) positive constants c1 = c1 (II). cp = cg (h) exist, such that cl It 4’ /I2 < T (6 9’) f c2 II q’ II’ (9 5 
Eh. q’ 4 R‘): 

b) the dissipation is comy;lete, i.e. the continuous, strictly increasing function a (r) 
exists, such that a(0) = 0 and Q* (t: g. q‘) q’ < -a (ii q’ II) ((1, g. q’) c: R, A & x R’);, 

d) the function grad n(9) is bounded in the set EA. 
Then the equilibrium position g = q’ =0 of system 12.4) is asymptotically q'-stable. 
Using Note 1.1, we can extend Theorem 2.1 to the case when the function &(i, g)!aq is 

unbounded in the set Eh”. In fact conditionf f) in Theorem 2.1 can be replaced by the following: 
f’) for every h> 0 the functicn 

is bounded in R,. 
In fact, the proof of Theorem 2.1 ought to be modified only at the very end, but we need 

to show that (instead of condition 3)) condition 3') holds for E @) = (4 (t). g' Mr. 
It is well-known that ;;t 1. (t? g (t)? q’ (t)) < h 
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We will assume that V, (q(t),q’(t))> a,> 0 in the segment [A, B) (A < B < A + I). From the 
estimate 

using the Halder inequality and condition f'), we obtain the inequality 

s” [V,(t,q(f),g’(f))],df~,‘(B)--L(A) +co~tr~(f)b~l(g(t),g’(t)))d~ 
A i 

is 

1. 

2. 

3. 

4. 
5. 

6. 

7. 

8. 

9. 

By virtue of (2.5) and the relation u(t) t u-<cc the right-hand side of the last estimate 

arbitrarily small if the quantity B-A is fairly small, which gives condition 3'). 
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